
Report on US Voting Engineering

After the negative reactions to the 2016 election results by the Democratic party and the

2020 election results by the Republican party, I decided to look into our voting systems in some
depth. As a very senior computer engineer who has led and implemented major computer
systems for companies including Intel, Digital Equipment Corporation (DEC), and Lockheed
Martin, I thought I might be able to offer a useful perspective on the topic. Never having looked
into voting systems, I approached the problem with no preconceived notions.

Unlike the efforts to prove voting fraud, this report is focused on the engineering practices

used to create our current system. To be clear, the audit and regression analyses that are looking
for fraud are investigating the results produced by the product of the engineering practices. This
report assesses the engineering that produced the voting systems. The use of Dominion artifacts
should not be taken as the sole focus. The goal is to look for improvements to the process.

There can be no doubt that our voting systems are a target for both internal and external

(foreign) attack. Every target has a breaking point, and it is no stronger than its weakest link. That
is true whether the system is a military defensive position (like a fort) or an Internet application.
Even Masada eventually fell. The question is: How truly vulnerable are our voting systems. Any
intelligent commander will review his/her defenses and strengthen the weak links before they
are breached. Voting systems must be approached with the same mindset.

The software component of our voting systems is only one link in the chain from a voter

to its final tabulation. Although the scope of this report is primarily focused on the software
engineering practices, these same practices apply to a wider range of engineering problems. The
wider scope of a total voting system is addressed by project management.

Overview
Since Dominion Voting Systems were the target of a lot of ire, the logical place for a

software engineer to start this investigation was to look for all the available data on code reviews
for the Dominion software. Code reviews are one of the first steps of software verification. My
hope was that I could satisfy myself that the engineering was satisfactory and go on to something
more productive. Unfortunately, that was not the case.

From the initial code review audit, I could work both backward and forward to get as

complete a picture of engineering truth as I could, without access to the actual hardware and
software source code of the voting systems. As expected, the results of the code review audit
were not totally satisfying; however, it did produce some nuggets of information. In particular, it
provided links to look at the engineering steps prior to the code reviews as well as pinpoint some
apparent weaknesses in the code itself.

There is no question that the Dominion software could be stronger, but it is but one link
in the chain and perhaps not the weakest link. The weakest link may well be the process by which
ballots enter the system. This is the classic “garbage in; garbage out” (GIGO) with which all
computer nerds are familiar. It is a project management issue that is caused by a lack of firm
requirements for the voting system. Fortunately, the Project Management Body of Knowledge
(PMBOK) is consistent with the Software Engineering Institute’s Capability Maturity Model
Integration (CMMI), so we can view the whole system as a continuum.

The current Voluntary Voting System Guidelines (VVSG) is not a robust set of

requirements that can be rigorously verified. Under the current system, rogue states can actually
subvert the will of their people and also disenfranchise the citizens of other states in the process.
The Election Assistance Commission (EAC) was created by the Help America Vote Act of 2002
(HAVA). HAVA was passed in response to the contentious 2000 presidential election. By
commissioning the VVSG as guidelines rather than requirements, the EAC is respecting the
constitutional power of the states in the 12th amendment. There is a constitutional solution to
the problem.

What is needed is for Congress to call a convention of states like the “Colorado River

Compact” (not an Article V convention). By so doing, experts from the several states could
hammer out real requirements that could be verified. The VVSG could become the VSR (Voting
System Requirements). This would elevate the certification process to a uniform level without
disrespecting federalism. By recurring review, like the Colorado River Compact, exposure of weak
links can be addressed, and the states can hold each other responsible. The first engineering step
is always the most important one, and that’s what this would be.

Requirements
In laymen’s terms, good engineering practice starts with a set of requirements and ends

with verifying that those requirements have been met. Every software development organization
has its own methodology built upon development stages to satisfy themselves that they have
built what was required. The degree of rigor required to satisfy customer(s) varies according to
the product’s use and the nature of the customer base. Companies like Intel and Oracle compete
for market share. Once a sale is made, the technical support for the products is equally important
as the engineering that built them. On the other hand, the engineering for human flight or to
send a satellite to another galactic body is unforgiving. National pride can suffer with a big waste
of taxpayer money. Even worse, people can die – especially with human flight.

It became immediately apparent that there were not enough artifacts to make a solid

conclusion about the maturity of the Dominion software, but there were enough to realize that
the engineering that had been done was not adequate for a system that has the repercussions of
a voting system. When satellites are launched, there is danger to perhaps tens of people on the
launchpad and surroundings. Those systems are required to meet CMMI level 3 management
and use IEEE 1012 standards. Human flight can threaten the lives of hundreds and must meet
CMMI level 5 engineering and meet DO-178B standards. It makes sense that voting systems that

can adversely affect the lives of literally all Americans, present and future, should far surpass the
standards for human flight. They don’t even come close.

Software Audit of Dominion Democracy Suite
The first document produced for this study was the “Audit of Code Reviews for Dominion

Democracy Suite.” It was discovered in the reviews from SLI Compliance that the Dominion
Democracy Suite is composed of over 1.5 million lines of C/C++ and over 1.8 million lines of C#.
Having written about that many lines of C/C++ in my career as an operating systems kernel
developer, I had two immediate reactions to this:

1. What on earth are they doing in a voting system that requires that much code? I read
the entire VVSG to get a handle on the “requirements,” and there is nothing there
that suggests this magnitude. The main thrust of a voting system should be simple
tabulation that should really be at most a couple hundred thousand lines of C/C++ and
perhaps the same amount of C# - even with support for a Windows GUI or CGI browser
interface. This means there is a lot of unnecessary complexity that is not driven by
actual requirements. That increases risk.

2. I give odds that the system has several “memory leaks.” Even the best developers can
fall prey to a memory leak when writing C/C++. Memory leaks are one of the prime
security exposures for a hacker to exploit. One coding convention used to combat this
kind of error is to use a “lint” tool that does static code analysis. The newer “splint”
does a more effective job of finding potential memory leaks, but it is prone to false
positives. A developer can use “tags” to override the tool, so an insider threat can
easily defeat the tool. A review of Dominion’s coding conventions showed no evidence
of the use of such a tool. Even worse, there was no requirement that compiles must
be free of warnings. Since the VVSG does not call for compiles to be free of warnings,
there is no reason to believe that Dominion enforces these conventions. This is
unwise.

The first artifacts found were performed by a small company (around 50 people) in Austin

Texas called @Sec. Surprisingly, this report was to be the most informative document on the
actual code that I would find. In all honesty, the 30ish findings in their document were very light
for a code review of a code base this large. @Sec had reviewed Democracy Suite 4.14. Apparently,
they had performed the code review on behalf of Wyle Laboratories, who certified the software
on 18 July 2013. The real problem is that the software was certified despite the fact that it clearly
violated some sound requirements in the VVSG. In particular, it violated the following:

• Encryption keys violations
o Hard-coded
o Unencrypted keys stored on disk
o Weak keys and cryptographic hashes

• Use of mixed-mode arithmetic. There have been accusations of Dominion systems
being configured to use fractions to weight individual votes differently. This is a
reasonable implementation for an HOA, where it is fair for differences in
investment to garner more or less influence; however, such a thing should be

strictly eliminated from public, political elections. The VVSG calls for the removal
of what is commonly referred to as “dead code.” If a voting system depends upon
its configuration to avoid executing HOA-style voting inequities, that code is
resident and becomes “dead.” Such code must be eliminated in a “trusted build.”

• “Complex branching structure” and bad exception handling. This is a particularly
worrisome violation because it can mask a lot of potential exploits – both internal
and external. Since later code reviews by Pro V&V only look at modifications from
the base, there is no reason to believe that a rewrite of this ever happened.

• Privilege escalation (this is very dangerous. Hackers look for these opportunities)
Any of these problems can have severe consequences, but @Sec graded only the poor quality of
keys as high severity. Other findings that could produce severe consequences were downgraded
because they coupled severity with probability. In particular, they undervalued the severity of an
insider threat and downgraded problems that they thought only an expert could exploit.
Considering probability for a commercial product is not unreasonable; however, for products
with the serious impact of human flight and above the situation changes. Old school IBM testers
had a useful slogan, “if the probability ain’t zero, it’s 100%.” This is the test that needs to apply
to assessing the severity of an issue for voting systems. (Taking this to the wider focus of the
entire voting chain, this means that if fraud can happen, it will.)

The current Dominion systems are version 5, but the version 4 artifacts revealed that
certification did not mean the software was devoid of severe problems. The California test report
for version 5.2 documented the potential for “SQL injection.” This was further demonstrated by
Col. Philip Waldron in current versions of the Dominion software. The VVSG specifically forbids
SQL injection because it is a dangerous exposure, yet the Dominion systems were certified. There
were two types of documentation for version 5:

1. SLI Compliance and Pro V&V reviews
2. Individual state reviews

SLI Compliance appears to have taken @Sec’s place for code reviews for version 5. It appears that
Pro V&V replaced Wyle as the certifier for Dominion. The individual state reviews were more
focused on the later stages of verification – actual acceptance testing. This enables the states to
ensure their individual laws are observed. Both the certifiers and the states received a Technical
Data Package (TDP) from Dominion that may have included a Requirements Tracing Verification
Matrix (RTVM) to ensure VVSG requirements were met before they added their own verification.

It is worthy of note that Pro V&V has less than ten employees. SLI Compliance has fewer
than fifty employees in Wheat Ridge, Colorado. It is unlikely that either of these companies have
the resources to review over 3.5 million lines of C/C++/C# code in anything approaching the rate
of change of a system of that size. Realistically, effective code reviews need to be done as the
first version of such a large piece of software is being created. It appears that both SLI and Pro
V&V addressed the problem in the same way:

• Use of automated source code review tools

• Manual review of changes only
Automated source code tools are good for catching some errors and enforcing conventions, but
they are not great for catching security threats. Manually reviewing changes is good, but it is only

as good as the breadth of knowledge the reviewers have about the whole code base. That said,
this is the typical way code reviews work. As code is developed, it is reviewed. There is no real
way to assess the degree of scrutiny and talent of the reviewers without a set of findings. For
version 5, neither SLI nor Pro V&V stated anything more than “no code issues were found” in the
documents I could find. Call me a skeptic, but this is a completely unsatisfying statement that
suggests that the reviews were little more than a box checked.

Dominion Coding Conventions
Coding conventions are not imperative for software development, but they can indicate

the professionalism of the organization. The underlying theory is that any developer in the
organization knows there will be certain things in and about the source code. They can be so
tyrannical that they either forbid or demand a tab character as opposed to a space, or they can
be so lax that it behooves a developer to run the source file through what is commonly referred
to as a “pretty printer” to massage it to his/her taste. I have worked in both environments, and
both extremes are annoying but have no real effect on the final product.

The Dominion Voting Democracy Suite ImageCast C++ Coding Standards is a 28-page

document for Dominion’s coding conventions, published in February 2017. As stated above,
there is no evidence in the fifteen pages of actual conventions that compiles either need to be
free of warnings or checked by a lint tool. From almost forty years of writing C/C++ code, I can
say unequivocally that these are the two most important conventions that a software
organization can adopt. All other conventions are either designed to avoid potential mistakes
from future modification or are merely cosmetic. Being free of warnings and the use of static
analysis tools like lint verify the existing code as it is.

There are really only five pages covering actual coding conventions. Pages 7 through 15

talk about comment conventions. To be clear, computer processors do not read comments.
People read comments. The VVSG actually calls for certain elements of this, and Pro V&V covers
it in their code review. Dominion specifies the use of doxygen. Doxygen is a tool that extracts
tagged comments to create documents from within the code. This theory of development goes
back to the 60s with a tool called troff. The idea is that documents will stay up to date if they are
extracted from comments in the code. The responsibility for creating technical documentation
shifts to the developer rather than a tech writer. The implication is that Dominion does not
employ tech writers to create professional documentation. This is reasonable for a small
organization. It is also common for open software to use such a tool.

Development Process
I could not find any details on Dominion’s development process, but a general caution

about development processes is in order. The VVSG encompasses project management in
addition to software guidelines. The PMBOK is the standard. “Agile” methodologies dominate
the tech world today. Most organizations follow some adaptation of the “scrum” methodology,
and the PMBOK has been updated to include such a methodology. Scrum is targeted to rapidly
accept changes in requirements. This may not be the wisest approach to a system that needs to

be secure, because old requirements are always implemented with a set of assumptions that can
create a security hole when a new requirement is introduced.

Trusted Build
The individual state acceptance documents refer to a “trusted build.” The SLI Compliance

test report describes a trusted build in its software compliance section. There is no doubt that
the trusted build is controlled in the process of being certified. What is not clear is how updates
are controlled, but it appears to be contractual. The VVSG calls for periodic updates, but it does
not appear that every one of these updates goes back through VSTL certification. If not, the
individual state is essentially acting as a VSTL certifier whenever a “trusted build” updates its
installations. But the state acceptance tests are targeted toward the latter stages of verification,
so there may be no review of source code modifications. This is a project management question.

The Larger Picture
From investigating all the artifacts I could find for code conventions, code reviews, and

acceptance testing of the states, the Dominion Democracy Suite has undergone a certain level of
engineering rigor. On the surface, it appears adequate for a normal commercial application;
however, whether it is rigorous enough for a voting system is an open question. Talent can make
up for process; however, process cannot make up for talent. When it comes to a system that will
endure attacks, both process and talent need to be as strong as possible. Neither Dominion nor
the VSTLs (Pro V&V and SLI Compliance) appear to have taken process to the level of human
flight. It is unfair to attempt an assessment of the engineering talent of Dominion.

Voting system requirements and engineering process need to exceed that of human

flight. Much more is at stake. This means that the development process needs to be CMMI level
5 compliant. Impact must be considered on its own without being watered down during
certification. Rigorous requirements need to guide the entire voting system, not just software.
No link in the chain can be overlook.

Recommendations
The Constitution is clear that the states control the voting process, and there is no reason

to change that with a constitutional amendment. The current HAVA and EAC were a step forward
in response to the 2000 election; however, there are many issues that require formal state input.
Congress first called the states together to create the Colorado River Compact in 1922. The
Compact was created by a convention that included technical experts as well as lawmakers. Each
state was basically represented by one of each. Just as the southwestern states needed to agree
to apportionment of the Colorado River, the states today need to agree on requirements to
secure honest election results uniformly across all states. Congress should call a similar
convention to address the shortcomings of the VVSG and create a robust requirement set. Below
are some suggestions for consideration by such a body.

To be clear the VVSG addresses more than software issues. It addresses the entire voting

chain. The states do take the printing of ballots seriously, but from discussions with my county

clerk and recorder, there is room for improvement. Just as I point to human flight for software
engineering standards, ballots should be treated like currency. There is no excuse for
counterfeiting of ballots to be less controlled than dollar bills.

Weaknesses in software can best be observed when the system is in action. I have

witnessed demonstrations of stacks of ballots being fed into a Dominion system multiple times
and not being rejected. There is an obviously missing requirement here. No ballot should be
accepted more than once. Building on the treatment of a ballot as a dollar bill, a serial number
should be checked to ensure against such duplicates. The serial number itself can embed a state
and precinct code to keep the check local.

Dominion supports “adjudication.” If I somehow don’t properly mark my ballot, I don’t

want anyone deciding what my intended vote should be. Personally, I would rather it not count
than be changed by someone else. A desire for good government dictates this philosophy.
Software engineers will always try to “improve” things. Sometimes those improvements just
make a mess. This is not to ignore that ballot reader errors can occur. Those errors should be
bound by a requirement. I would like to see an “election compact” address this issue. It should
be good theatre.

The requirements for the election system need to be brutal. The aforementioned DO-

178B standard severely restricts normal programming techniques. Efficiency and elegance are
sacrificed for reliability. This philosophy is currently not in the VVSG but should be put on steroids.
To pinpoint an example, consider one of the major functions we witness during elections. The
poll workers know the state of the election as they are tabulating ballots. This opens up a big
insider threat. Even worse, these results are broadcast to the outside world thereby opening an
even bigger threat. The tabulation process should be like a piggy bank. The ballots get processed,
but no one sees the results until the bank is broken open. The inner workings do need to be
completely traceable. The media would hate it because they wouldn’t get to spend the night
torturing the American public. So what?

REFERENCES

• “Voluntary Voting System Guidelines VVSG2.0.” EAC, n.d.

https://downloads.regulations.gov/EAC-2020-0002-0001/content.pdf.

• “Source Code Review Dominion Democracy Suite 4.14-A Voting System.” California Secretary

of State, n.d. https://votingsystems.cdn.sos.ca.gov/dominion-voting/democracy-suite.pdf.

• “RESULTS OF DOMINION VOTING SYSTEMS DEMOCRACY SUITE 5.5A.” Pennsylvania

Secretary of State, n.d.

https://www.dos.pa.gov/VotingElections/Documents/Voting%20Systems/Dominion%20Democra

cy%20Suite%205.5-

A/Dominion%20Democracy%20Suite%20Final%20Report%20scanned%20with%20signature%

20011819.pdf.

• “US Election Assistance Commission Discrepancy Report for 5.5A (Attachment C).” EAC, n.d.

https://www.eac.gov/sites/default/files/voting_system/files/Attachment_C_-_Dominion_D-

Suite_5.5-A_Discrepancy_Report.pdf.

• “Dominion Democracy Suite 5.10 Voting System Software Test Report .” California Secretary of

State, n.d. https://votingsystems.cdn.sos.ca.gov/vendors/dominion/dvs510software-report.pdf.

• “Voting System Examination of Dominion Voting Systems Democracy Suite 5.5-A.” Texas

Secretary of State, n.d. https://www.sos.texas.gov/elections/forms/sysexam/oct2019-mechler.pdf.

• “Test Plan for EAC 2005 VVSG Certification Testing Dominion Voting Systems Democracy

Suite (D-Suite) Version 5.5-CVoting System.” Pro V&V, n.d.

https://www.eac.gov/sites/default/files/voting_system/files/Dominion%20Voting%20Systems%2

0D-Suite%205.5-C%20Test%20Plan-Rev.%2001.pdf.

• “Colorado Requirements Matrix.” Colorado Secretary of State, n.d.

https://www.sos.state.co.us/pubs/elections/VotingSystems/ClearVote/ColoradoRequirementsMatr

ix-ClearVote1-4-1.xls.

• “Uniform Voting System Request for Proposal.” Colorado Secretary of State, n.d.

https://www.sos.state.co.us/pubs/elections/VotingSystems/RFI/proposals/ClearBallotColoradoU

VSProposal.pdf.

• “Democracy Suite ImageCast C++ Coding Standard.” Colorado Secretary of State, n.d.

https://www.sos.state.co.us/pubs/elections/VotingSystems/DVS-

DemocracySuite511/documentation/SD-CPlusPlus-CodingStandard-5-11-CO.pdf.

• “Dominion Voting Java Coding Standard.” Colorado Secretary of State, n.d.

https://www.sos.state.co.us/pubs/elections/VotingSystems/DVS-

DemocracySuite/documentation/dvs_Java%20Coding%20Standards.pdf.

• “VVSG 1.0, Vol. 1: U.S. Election Assistance Commission.” VVSG 1.0, Vol. 1 | U.S. Election

Assistance Commission. Accessed January 4, 2021.

https://www.eac.gov/documents/2017/03/15/vvsg-10-vol-1-voluntary-voting-system-guidelines-

vvsg.

• “Certification Test Report Democracy Suite 5.5A.” EAC, n.d.

https://www.eac.gov/sites/default/files/voting_system/files/Dominion_Voting_Systems_D-

Suite_5.5-A_Test_Report_v1.1.pdf.

• “Test Report for EAC 2005 VVSG Certification Testing Dominion Voting Systems Democracy

Suite (D-Suite) Version 5.5-C Voting System.” EAC, n.d.

https://www.eac.gov/sites/default/files/voting_system/files/Dominion%20Voting%20Systems%2

0%20D-Suite%205.5-C%20Test%20Report-Rev.%2001.pdf.

• “Dominion Voting Systems Democracy Suite 5.5C Certificate of Conformance.” EAC, n.d.

https://www.eac.gov/sites/default/files/voting_system/files/DVS%20DSuite%205.5-

C%20Certification%20and%20Scope%2007-09-2020.pdf.

• “Dominion Voting Systems Democracy Suite 4.14A Certificate of Conformance.” EAC, n.d.

https://www.eac.gov/sites/default/files/voting_system/files/Scope_of_Cert4_14-

A_1_FINAL_6_16_14.pdf.

• “SECURITYASSESSMENT SUMMARY REPORTFORDOMINION VOTING

SYSTEMSDEMOCRACY SUITE 4.0.” EAC, n.d.

https://www.eac.gov/sites/default/files/eac_assets/1/28/Security%20Assessment%20Report.pdf.

• “DEF CON 27Voting MachineHacking Village.” defcon.org, n.d.

https://media.defcon.org/DEF%20CON%2027/voting-village-report-defcon27.pdf.

• “Source Code Review Dominion Democracy Suite 4.14-A Voting System.” verifiedvoting.org.

@Sec, n.d. https://verifiedvoting.org/wp-content/uploads/2020/08/democracy-suite.pdf.

• “Democracy Suite 5.5-A Certification Test Report–Modification Version 1.1.” SLI Compliance,

n.d. https://www.eac.gov/sites/default/files/voting_system/files/Dominion_Voting_Systems_D-

Suite_5.5-A_Test_Report_v1.1.pdf.

• “Dominion Democracy Suite 5.2 Source Code Test Report for California.” California Secretary

of State, n.d. https://votingsystems.cdn.sos.ca.gov/vendors/dominion/ds52-sc.pdf.

• “Certificate of Conformance.” United States Election Assistance Commission. Wyle

Laboratories, n.d.

https://www.eac.gov/sites/default/files/voting_system/files/Certificate%20and%20Scope%20DV

S414.pdf.

	Overview
	Requirements
	Software Audit of Dominion Democracy Suite
	Dominion Coding Conventions
	Development Process
	Trusted Build

	The Larger Picture
	Recommendations
	REFERENCES

